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Abstract

Host range expansion in insect herbivores is often thought to be mediated by several
factors, principal among them are secondary plant metabolites. In weed biological control, the
host range of a prospective agent is one of the most important considerations in its

implementation. Extensive host testing tests seek to determine the behavioral acceptance and
nutritional value of different test plant species to the potential agent. A list of test plants is
compiled that comprises species that are close taxonomic relatives of the target weed plus
other species of economic or ecologic importance. The host testing of the Melaleuca

quinquenervia biological control agent Oxyops vitiosa indicated that larvae would accept and
complete development on the Australian target weed M. quinquenervia, two Australian
ornamental species, Callistemon citrina, Callistemon viminalis (all Myrtaceae). However, the

larvae did not complete development when fed a North American species Myrica cerifera
(Myricaceae). The study reported here confirms these results and examines the nutritional and
performance differences in O. vitiosa larvae fed leaves of these species. The leaf quality factors,

percent moisture, percent nitrogen, toughness, and terpenoid content were related to larval
survival, performance and digestive indices. The results indicate that plant quality among the
Myrtaceae species was generally similar and correspondingly larval survival, performance and

digestive indices differed little when larvae were fed leaves of these species. However,
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significant differences occurred in the plant quality of the North American M. cerifera
compared with the Australian species which had leaves with the lowest percent moisture,

lowest leaf toughness, highest percent nitrogen. This species, however, is not a physiological
host as none of the neonates survived to pupate. When third instars were switched to
M. cerifera from their normal host M. quinquenervia reductions were found in survival,

biomass gain, digestive efficiency, and conversion of digested food to insect biomass. The
marginal acceptance of this North American native plant in laboratory bioassays appears
related to the terpenoid chemistry that has similarities to the taxonomically unrelated host

M. quinquenervia. However, the high larval mortality corresponds to several novel terpenoids
that are not present in the host. For weed biological control host testing these results indicate
thatM. cerifera is a poor host for O. vitiosa. Additionally, future test plant lists should include

plants with secondary metabolites similar to the target weed as these compounds may
constitute behavioral cues that are relevant to these specialized herbivores.
Published by Elsevier Ltd.
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1. Introduction

Understanding the secondary plant metabolites involved in selection and
utilization of hosts and the toxicity of non-hosts can reveal the mechanisms that
maintain specificity in specialist herbivores. The insect herbivores required for weed
biological control use a narrow range of host plants for adult feeding, oviposition,
and larval growth and development. This specialization may be imposed by several
factors either from the plant (e.g., secondary metabolites; Stadler, 1992) or from
outside the plant (e.g., natural enemies; Bernays and Graham, 1988). Factors
produced by the plant include secondary plant metabolites that may function as
deterrents against non-adapted herbivore species or as attractants and/or recognition
factors for adapted species (Schoonhoven et al., 1998). Foliar mono- and
sesquiterpenoids are known to function as both chemical defenses against herbivores
and as feeding stimulants (Gershenzon and Croteau, 1991; Langenheim, 1994).
Many terpenoids are restricted in their distribution in plants (Gershenzon and
Croteau, 1991), or unique species-specific chemical profiles occur, and thus may
provide distinctive host plant cues that are used by herbivores searching for
a suitable host (Wibe et al., 1997).

The initial steps of weed biological control programs involve the determination of
the host range of a prospective agent prior to consideration for release. Accurately
predicting the host range of a potential agent is fundamental to this process. This
may be conducted first in the country of origin in open field testing (Briese et al.,
2002) and later under controlled environmental conditions in quarantine (Zwölfer
and Harris, 1971; McFadyen, 1998). Initially a plant test list is established composed
of species that are taxonomically related to the weed and species of economic and
ecologic importance from the area where the weed is a problem (Wapshere, 1974).
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This centrifugal/phylogenetic testing procedure involves ‘‘testing plants of in-
creasingly distant relationship to the host until the host is circumscribed’’ (Wapshere,
1974) and is based upon the assumption that host shifts occur to plants of similar
taxa (Ehrlich and Raven, 1964; Mitter and Farrell, 1991). As useful as this process
is, it potentially overlooks unrelated plant taxa that share similar secondary plant
metabolites. Moreover, the distribution of secondary metabolites in plants only
inconsistently follows taxonomic designations (Wink, 2003). Recent evidence in-
dicates that chemical similarity may be a better predictor of host use than are
phylogenetic relationships (Becerra, 1997; Wahlberg, 2001). Although little evidence
may exist from weed biological control projects (Schaffner, 2001), species with
secondary metabolites similar to the target weed should be included in the test list as
they may contain the behavioral cues used by these specialized herbivore species to
locate hosts and initiate feeding.

The Australian weevil Oxyops vitiosa, Pascoe (Coleoptera: Curculionidae) was
introduced in south Florida, USA in 1997 for the biological control of the invasive
weed Melaleuca quinquenervia (Cav.) S. T. Blake (Myrtaceae) (Center et al., 2000).
This weevil species has since been established throughout the infested area of
Florida. The larvae feed on the young leaves and have a characteristic odor that
resembles that of the foliage of their host tree (Wheeler et al., 2003). Australian field
collections of O. vitiosa indicated that this species restricts its feeding to its primary
host M. quinquenervia and a few close relatives (Balciunas et al., 1994). In no-choice
laboratory trials feeding and oviposition by this species occurred on other members
of the Myrtaceae but the larvae only completed development on M. quinquenervia
(Balciunas et al., 1994). Quarantine host testing of O. vitiosa suggested that suitable
hosts included several species of Australian ornamental myrtaceous plants
(Balciunas and Buckingham, 1996). Considering their taxonomic proximity to the
target weed, feeding on these close relatives was not surprising. These included
species of Callistemon, a genus whose members are closely related to Melaleuca
(Byrnes, 1986; Craven, 1999). Representatives of this genus that were tested include
Callistemon citrina (Curtis) Skeels and Callistemon viminalis (Sol. Ex Gaertner.)
G Don ex Loundon. The taxonomy of these genera is still being revised, and
although these were identified as Melaleuca spp. (Craven, unpublished data;
Australian National Herbarium, Canberra), the more traditional names are included
here, as this revision has yet to be published. More surprising however, while no
neonates could survive, a few of the third instars of O. vitiosa previously fed
M. quinquenervia leaves could feed and complete development on leaves of the
unrelated wax myrtle Myrica cerifera L. (Myricaceae). Confirmation of these results
is essential to continue promoting this insect as a biological control agent of
M. quinquenervia. Furthermore, understanding the secondary metabolites that are
common among the weed and test plants and the potential agent’s response to these
species will assist in our understanding of agent specificity and allow practitioners to
better predict the host range of future agents.

The objectives of this study were to determine the larval survival and performance
(consumption, growth, development, food digestibility and feeding efficiency) of
O. vitiosa when fed leaves of these species and the target weed. In addition to
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terpenoid content, several plant quality factors were examined that were found
previously (Wheeler, 2001) to influence O. vitiosa performance, namely leaf tough-
ness, water content, and percent nitrogen. This information will determine the safety
of this agent for continued field release and examine the mechanisms of host
utilization by this specialist herbivore.

2. Methods and materials

2.1. Plants

Plants of the weed M. quinquenervia were obtained from seeds collected in south
Florida and plants of the ornamental species M. cerifera, C. citrina, and C. viminalis
were purchased as seedlings from commercial ornamental growers. All plants were
transplanted into larger pots (11.4 l) and fertilized with 90 g/pot Osmocote Plus 15-9-
12, N-P-K (Scotts-Sierra Horticultural Products, Marysville, OH) in a slow-release
‘southern’ formulation (Wheeler, 2003). Plants were grown in tanks that received
rainwater and irrigation three times/week for approximately 6 months. Three times
weekly, leaves were clipped from trees and brought back to the laboratory. As
O. vitiosa is a known flush-feeder (Wheeler, 2001), only the silky terminal 10 cm tip
leaves of each tree species were collected and either used for plant quality analysis or
fed to larvae.

2.2. Plant quality

Several leaf quality factors that are relevant to herbivore nutrition were
investigated including leaf toughness, percent moisture (for determination of
nutrient dilution), nitrogen content, and terpenoid constituents. Leaves were tested
for toughness using a modified gram gauge (Wheeler, 2001) which estimates the
pressure required to puncture leaf tissues. Leaf toughness was measured on leaves
1–10 counting from the tip leaves toward the branch base. Replicates consisted of
20 leaves of each position. Leaf percent moisture (nZ 65) was determined
gravimetrically by weighing each leaf (positions 1–10) fresh and after drying
(60 �C) for 48 h. Percent nitrogen (nZ 3) was determined individually for leaves in
positions 1–10 with a Kjeldahl method on a dry mass basis as previously described
(Wheeler, 2001). These dry mass nitrogen estimates were converted to fresh mass
nitrogen by multiplying the percent nitrogen (dry mass) by the proportion of leaf dry
mass.

2.3. Terpenoid analysis

Flush leaves were clipped from young trees of M. quinquenervia (nZ 10),
C. citrina (nZ 6), C. viminalis (nZ 6), and M. cerifera (nZ 5) and brought to the
laboratory where they were frozen (�10 �C) as described previously (Wheeler et al.,
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2003). The leaf components were extracted by a modified microwave technique
(Wheeler et al., 2003).

2.4. Chemicals

Standards were purchased from commercial sources, or donated (viridiflorol, and
2,4-dihydroxy-6-methoxytoluene) by I. A. Southwell (NSW Agriculture, Wollongbar
Agricultural Institute, NSW, Australia) and were of the highest purity available. The
standards included the primary compounds reported by Brophy et al. (1989) and
Wheeler et al. (2003).

2.5. Gas chromatography

Samples were analyzed with an Agilent (Hewlett–Packard) model 6890 gas
chromatograph. Data collection, storage, and analysis were conducted with the
Agilent ChemStation (Wilmington, DE) data system. Helium at a linear flow rate of
37 cm/s was used as a carrier gas. All samples were analyzed on a fused silica
capillary column (DB-17MS Agilent; 30 m! 0.32 mm i.d., 0.25 micron thick film).
Injector temperature was 250 �C and FID temperature was 250 �C. The oven
temperature was held at 50 �C for 2 min, then increased at 8 �C/min to 250 �C where
it was held for 10 min.

Compound identities were confirmed by GC–MS using an Agilent 6890
instrument fitted with either an HP-5MS (Agilent, 30 m! 0.25 mm, 0.25 micron
film thickness) or a DB-17MS (J&W Scientific, 30 m! 0.32 mm, 0.25 micron thick
film) FSOT column with helium at 36 or 42 cm/s (HP-5MS and DB-17MS,
respectively) as a carrier gas, injector port (split 1:50) at 250 �C, mass selective
detector (HP 5973) at 250 �C (source) and 150 �C (quad) with transfer line 280 �C
and ion source filament voltage of 70 eV. Component identification was made on the
basis of mass spectral fragmentation, retention index with n-paraffins, comparison
with authentic constituents when available, and mass spectral and retention
matching with commercial libraries (NIST, Wiley, and Adams).

2.6. Larval survival, growth, and development

Eggs of O. vitiosa were obtained from wild adults collected onM. quinquenervia in
Ft Lauderdale, FL. Larval performance was determined when fed leaves of the
different plant species using both neonates (nZ 20) and third instars (nZ 20)
previously fed M. quinquenervia leaves. All O. vitiosa larvae were reared through to
pupation individually in plastic petri dishes (15! 2 cm) lined with moistened filter
paper and sealed with Parafilm to retain moisture. All rearing was conducted at
28 �C 90% RH and under a 14:10 h photoperiod. Data were collected on larval
survival and developmental performance. The final fresh mass of each pupa
(G0.1 mg) and the time (days) required to reach pupation was recorded. Leaf
consumption was estimated gravimetrically (Wheeler, 2003). Insect frass was
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collected and dried (60 �C for 48 h) to estimate the approximate digestibility and
efficiency of conversion of digested food (Wheeler et al., 2001).

2.7. Data analysis

All analyses were conducted with SAS/PC (PROC GLM) unless otherwise noted
(SAS Institute Inc., 1990). The leaf moisture, toughness and nitrogen results were
analyzed on different leaves and comparisons of regression coefficients of the different
species were performed by ANCOVA. The nutritional parameters (e.g., consumption,
development time, biomass gain) were analyzed by ANOVA and means were
compared with the Ryan’s Q test (PZ 0.05). Percent survival data were analyzed by
binomial logistic regression (PROC LOGISTIC). The food digestibility and feeding
efficiencies were analyzed by ANCOVA. For food digestion estimates, consumption
served as the covariate and the amount of frass served as the response variable. For
estimates of efficiency conversion of digested food to insect biomass, the amount of
food digested served as the covariate and biomass gain was the response variable
(Wheeler et al., 2001). To determine the effect of plant species on food digestibility and
conversion efficiencies the estimates obtained from larvae fed C. citrina, C. viminalis,
and M. cerifera were compared with those from larvae fed M. quinquenervia.

3. Results

3.1. Plant quality

Leaf percent moisture differed according to leaf position on the stem (F1,36Z
106.00; P! 0.0001), plant species (F3,36Z 15.69; P! 0.0001), and their interaction
(F3,36Z 27.32; P! 0.0001). The lowest percent moisture was found in leaves from
M. cerifera and the values for this species decreased gradually toward the base of the
stem (Fig. 1A). This is in contrast to the percent moisture of leaves from the other
three species which increased toward the base. A comparison of regression
coefficients of these lines (ANCOVA) indicated that the slope of the M. cerifera
leaf moisture was significantly less than that of M. quinquenervia (tZ 7.83;
P! 0.0001). Additionally, the height of the regression line for leaf moisture of M.
cerifera was significantly less than that of M. quinquenervia (tZ 5.71; P! 0.0001).

Leaf toughness also differed significantly by leaf position (F1,68Z 205.00;
P! 0.0001), plant species (F3,68Z 49.54; P! 0.0001), and their interaction
(F3,68Z 12.26; P! 0.0001). The greatest leaf toughness was found with
M. quinquenervia leaves and this toughness increased toward the base of the branch
tip (Fig. 1B). This was in contrast to C. viminalis (tZ 5.42; P! 0.0001), C. citrina
(tZ 2.71; PZ 0.0086), and M. cerifera (tZ 4.63; P! 0.0001) whose leaf toughness
values changed significantly less across the different leaf positions. Additionally, the
height of the regression line for leaf toughness of C. citrina (tZ 4.69; P! 0.0001)
and M. cerifera (tZ 10.27; P! 0.0001) were significantly less than that of M.
quinquenervia.
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Leaf percent nitrogen (dry mass) was influenced by plant species, but not leaf
position or their interaction. The leaves from M. cerifera had the greatest nitrogen
content and those of C. citrina had the lowest nitrogen content compared with those
of the other two species (Fig. 2). Similar results were found when the percent
nitrogen values were calculated on a fresh mass basis.

The foliar terpenoid constituents of the four plant species were identified by GC–
MS and their identities were confirmed with authentic standards when available
(Table 1). Identities were assigned with matching retention indices (Adams, 2001)
and when mass spectra matched (90% or greater) those generated with standards on
the same instrument or with published spectra (NIST, Wiley, or Adams). All
constituents were identified that accounted for 1% or more of the total chromato-
gram.

Comparisons of the foliage constituents of the four species indicated that, in terms
of presence, those from M. cerifera were the most similar to those of
M. quinquenervia (Table 1). Of the 32 compounds identified from M. quinquenervia
leaves, 23 were also found in M. cerifera. However, M. cerifera also had the greatest
number of unique compounds (7) that were not found in M. quinquenervia or the
other species. Quantitatively, leaves of M. cerifera were dominated most often by
a-pinene, 1,8-cineole, b-caryophyllene, a-humulene, and b-selinene. The last two
constituents were in much higher concentration than in the leaves of
M. quinquenervia. The leaves of the two other species, C. citrina and C. viminalis
contained 17 and 18 of the M. quinquenervia constituents, respectively. The leaves of
these species contained relatively high concentrations of a-pinene, 1,8-cineole, and
a-terpineol. The leaves of C. citrina and C. viminalis tested could be distinguished
by the presence or absence of d-cadinene (present only in C. viminalis) and
caryophyllene oxide (present only in C. citrina) and the different concentrations of
several constituents including p-cymene and a-terpineol.

3.2. Larval survival, growth and development

3.2.1. Neonate performance
Recently emerged larvae (!12 h old) were transferred to fresh tip leaves and

monitored for survival, and performance. None of the larvae fed as neonates on
M. cerifera survived to the prepupal stage, whereas the percent survival of those fed
C. citrina, C. viminalis, and M. quinquenervia were equal to or greater than 65%
(Fig. 3A). Larval development time to the prepupal, pupal, and adult stages was
greatest for those fed the C. citrina leaves (Fig. 3B). Neither the sex of the individuals
nor the interaction of sex and the species of plant fed had a significant influence on
development time. Biomass gain of the neonates to the prepupal, pupal, and adult
stages was significantly influenced only by the sex of the individuals. Females had
significantly greater biomass than males in the prepupa (meanG SEM;
62.6G 1.2 mg vs. 54.0G 1.2 mg; F1,39Z 21.75; P! 0.0001), pupa (54.3G 1.1 mg
vs. 45.0G 1.2 mg; F1,39Z 32.13; P! 0.0001), and adult (47.2G 1.2 mg vs. 37.3G
0.8 mg; F1,39Z 36.60; P! 0.0001) stages.
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3.2.2. Third instar performance
To determine the effect of plant species on older larvae, neonates were initially

reared on M. quinquenervia leaves during the first two instars and then transferred to
their respective test plants until pupation. Survival of these third instars reared to the
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adult stage was significantly reduced only for those fed the M. cerifera leaves
(20%G 11.6%) compared with those fed leaves of C. citrina (75.0G 9.6%),
C. viminalis (67.5G 7.5%), and M. quinquenervia (81.7G 6.9%) (Fig. 4A). Larval
food consumption estimated on a dry mass (121.5G 5.4 mg) and a fresh mass
(439.4G 20.6 mg) basis was not significantly different when fed the leaves from the
different plant species (Fig. 4B). Development time of the third instars to the
prepupal stage was greater in those fed leaves of M. cerifera (11.4G 0.9 d) and

Fig. 1. Mean (GSE) leaf percent moisture (A) and leaf toughness (B) of the fresh tips of different species

from the apical tip (number 0) toward the base of the stem. The regression line coefficients for height and

slope of leaf percent moisture for M. cerifera ( yZ 67.3 � 0.2x; r2 Z 0.37; P Z 0.0492) were significantly

less (t Z 5.71; P ! 0.0001 and tZ 7.83; P ! 0.0001, respectively) than those for M. quinquenervia (B)

( yZ 70.1 C 0.5x; r2 Z 0.95; P ! 0.0001). The regression coefficients for leaf percent moisture for

C. viminalis ( yZ 70.2 C 0.5x; r2 Z 0.81; P Z 0.0002) and C. citrina ( yZ 69.6 C 0.4x; r2 Z 0.90;

P ! 0.0001) did not differ significantly from those of M. quinquenervia. The height of the regression line

for leaf toughness for M. cerifera ( y Z 104.9 C 3.5x; r2 Z 0.69; P ! 0.0001) and that of C. citrina

( yZ 181.1 C 6.4x; r2 Z 0.79; P ! 0.0001) were significantly less (t Z 10.27; P ! 0.0001 and t Z 4.69;

P ! 0.0001, respectively) than that of M. quinquenervia ( y Z 238.3 C 9.2x; r2 Z 0.86; P ! 0.0001),

however, the regression line height for leaf toughness for C. viminalis ( yZ 246.2 C 3.7x; r2 Z 0.66;

P ! 0.0001) did not differ from that of M. quinquenervia.
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Fig. 2. Mean (GSE) leaf percent nitrogen determined on both dry mass (solid bars; F3,35 Z 18.73;

P ! 0.0001) and fresh mass (open bars) basis were influenced significantly by plant species. Plant species

included M. cerifera (M. cer.), C. citrina (C. cit.), C. viminalis (C. vim.), and M. quinquenervia (M. quin.).

Solid bars with the same uppercase letters (dry mass) or open bars with the same lowercase letters (fresh

mass) did not differ significantly according to a Ryan’s Q mean comparison test (P Z 0.05).
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Table 1

Mean percent (GSE) concentration of all constituents identified by GC and GC–MS from flush leaves of

M. quinquenervia (nZ 10), C. citrina (nZ 6), C. viminalis (nZ 6), and M. cerifera (nZ 5)

Compounds M. quinquenerviaa C. citrina C. viminalis M. cerifera

nb % SE N % SE n % SE n % SE

a-Thujenec 10 0.04 0 6 1.23 0.36 6 0.25 0.06 5 0.31 0.05

a-Pinene 10 5.99 0.52 6 15.13 2.42 6 20.92 5.8 5 27.5 4.83

Benzaldehyde – – – – – – – – – 5 0.1 0.02

Sabinene 9 0.08 0.02 2 1.11 0.56 3 0.26 0.02 4 0.27 0.03

b-Pinene 10 2.96 0.19 6 1.91 0.37 6 1.7 0.23 5 1.22 0.14

Myrcene 10 1.46 0.12 5 0.77 0.28 6 1.18 0.07 5 0.22 0.03

a-Phellandrene 7 0.03 0 6 1.53 0.52 6 0.72 0.25 – – –

a-Terpinene 4 0.06 0.02 – – – – – – – – –

p-Cymenec 10 0.02 0 6 5.97 1.27 6 0.71 0.09 5 2.55 1.98

Limonene 10 6.77 0.26 6 4.67 0.21 6 4.42 0.59 5 1.41 0.28

1,8-Cineolec 10 28.58 3.15 6 58.59 3.18 6 60.35 9.36 5 3.2 0.92

g-Terpinene 10 0.5 0.03 – – – – – – 5 4.13 0.77

Terpinolene 10 0.25 0.02 1 0.17 1 0.08 4 0.21 0.03

Linalool 10 0.13 0.01 6 0.88 0.13 6 0.37 0.04 5 1.18 0.1

Terpinen 4-ol 10 0.51 0.03 5 1.11 0.12 4 0.44 0.12 4 0.21 0.07

a-Terpineol 10 8.66 0.93 6 4.74 0.88 6 1.72 0.12 5 4.13 0.77

a-Copaene 10 0.17 0.01 – – – 3 0.48 0.08 5 0.29 0.06

b-Elemened – – – – – – – – – 5 2.72 0.88

a-Gurjunene 10 0.55 0.05 – – – – – – – – –

b-Caryophyllene 10 6.53 0.56 6 1.09 0.07 3 0.21 0.05 5 16.74 3.88

E-a-bergamotened – – – – – – – – – 5 1.52 0.15

(C)-Aromadendrene 10 0.18 0.01 1 0.44 6 0.6 0.06 – – –

a-Humulene 10 0.9 0.08 – – – – – – 5 9.59 1.12

(�)-Alloaromadendrene 10 1.12 0.1 1 0.37 6 0.52 0.04 4 0.3 0.06

a-Curcumened – – – – – – – – – 5 1.77 0.23

Germacrene Dd – – – – – – – – – 5 5.1 1.32

b-Selinened 10 1.21 0.14 – – – – – – 5 8.53 3.41

a-Selinened 10 0.56 0.05 – – – – – – 5 4.51 0.27

b-Bisabolened – – – – – – – – – 5 2.99 0.28

g-Cadinened 10 0.65 0.06 – – – – – – 5 0.66 0.44

d-Cadinene 10 0.87 0.08 – – – 6 0.3 0.13 5 0.52 0.11

E-nerolidol – – – – – – – – – 5 2.55 0.78

2,4-Dihydroxy-6-

methoxytoluene

10 1.38 0.04 – – – – – – – – –

Caryophyllene oxide 10 2.28 0.27 5 2.6 0.3 – – – 5 0.82 0.35

Globulol 10 0.36 0.03 – – – – – – – – –

Viridiflorol 10 26.27 2.43 – – – – – – – – –

Epi-a-cadinold 10 0.55 0.06 – – – – – – – – –

b-Eudesmol 10 0.33 0.09 – – – – – – – – –

a-Cadinold 10 0.31 0.02 – – – – – – – – –

Constituents quantified on the DB-17MS column, unless otherwise noted. Rows with italic values contain

the major constituents (O5%) found in M. quinquenervia foliage.
a Dash indicates compound was not detected.
b Number of plants where the constituent was detected.
c Constituents quantified on the HP-5MS column.
d Tentative assignments as identification was based on matching spectra and retention index but no

standard was available for comparison.
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C. citrina (10.8G 0.2 d) compared with those fed leaves of the other two plant species
(Fig. 4C). Biomass gain was reduced only for those larvae fed leaves of M. cerifera
where the larvae gained 19.8 (G3.2 mg; Fig. 4D). As in the previous study where
larvae were reared from neonates, the sex of the prepupae (F1,43Z 23.0; P! 0.0001),
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Fig. 3. Mean (GSE) percent survival (A) and development time (B) of O. vitiosa neonates to the adult

stage when fed leaves from M. cerifera (M. cer.), C. citrina (C. cit.), C. viminalis (C. vim.), or M.

quinquenervia (M. quin.). No neonates survived when fed M. cerifera leaves and the percent survival of the

larvae fed the other species did not differ significantly. Larval development time to the prepupal

(F2,39Z 62.51; P! 0.0001), pupal (F2,39Z 50.77; P! 0.0001), and adult (F2,39Z 30.71; P! 0.0001)

stages was greatest for those fed the C. citrina leaves. Bars describing the same stage with the same fill and

uppercase letters did not differ significantly according to a Ryan’s Q mean comparison test (PZ 0.05).
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pupae (F1,43Z 31.7; P! 0.0001), and adults (F1,43Z 39.7; P! 0.0001) significantly
influenced their biomass (excluding those fed M. cerifera as all neonates died),
regardless of larval diet. Female prepupal (62.6G 1.2 mg), pupal (54.3G 1.1 mg),
and adult (47.2G 1.2 mg) biomass were all greater than those of males (54.0G
1.2 mg; 45.0G 1.2 mg; 37.3G 0.8 mg, respectively).

To determine the effect of larval diet on food digestion, frass production was
analyzed at different levels of consumption. Greater frass production at a given level of
consumption would indicate a relatively low level of food digestion. As used here,
digestion includes both food digestion and absorbance. Frass production increased
with greater food consumption for all larvae fed from the third instar to the prepupal
stage regardless of the plant species (Fig. 5). The ANCOVA indicated that the
covariate consumption was significant, as was the interaction between this and plant
species indicating significant slope differences. Slope comparisons indicated that
digestion of the M. cerifera leaves by O. vitiosa larvae was significantly reduced, as
indicated by the increased frass production, compared with larvae fed the
M. quinquenervia leaves. These results indicate that consumption ofM. cerifera leaves
may interfere with digestion and/or absorption of ingested food by O. vitiosa larvae.

Once the food is digested and absorbed a percentage is converted to growth while
the remainder is used as fuel for metabolic processes. If the larvae are fed a toxic diet
more digested food resources are allocated to metabolism resulting in decreased
growth. To determine the effect of the larval diets on the efficiency of conversion of
the digested food to growth, larval biomass gain was determined at a range of food
digestion levels (Fig. 6). The ANCOVA indicated that species and the covariate
consumption were both significant, however, the interaction between the two was
not indicating differences that occurred in biomass gain. When the covariate-
adjusted biomass gain values were compared larvae fed the M. cerifera leaves had
significantly reduced values compared with those fed the M. quinquenervia leaves.

4. Discussion

Even though this biological control species is apparently highly selective in its
feeding and oviposition it is not surprising, considering their similar secondary
metabolites, to find acceptance and development on species of a related Australian
genus. The members of the Callistemon spp. tested here are related taxonomically to
the target weed M. quinquenervia, and considered by some (Byrnes, 1986; Craven,
1999) members of the Melaleuca genus. Not only are these species close taxonomic

Fig. 4. Mean (GSE) larval survival (%), consumption (mg dry mass), development time to the prepupal

stage (d), and biomass gain (mg) of O. vitiosa when fed leaves fromM. cerifera, C. citrina, C. viminalis, and

M. quinquenervia. Survival was significantly reduced for larvae fedM. cerifera compared with those fed the

M. quinquenervia leaves (X3
2 Z 21.4; P! 0.0001). Consumption was not significantly influenced by plant

species. Development time was significantly greater for larvae fedM. cerifera and C. citrina (F3,59 Z 15.15;

P ! 0.0001). Prepupal biomass gain was significantly reduced in larvae fed M. cerifera (F3,58 Z 9.59;

P ! 0.0001). Bars with the same lowercase letters within a graph did not differ significantly according to

a Ryan’s Q mean comparison test (P Z 0.05).



378 G.S. Wheeler / Biochemical Systematics and Ecology 33 (2005) 365–383
relatives but their terpenoid profiles, as shown here, are also similar to those of the
target weed, containing 17 and 18 of the 32 M. quinquenervia constituents identified.
The list of constituents found here is generally confirmed by others that have
analyzed C. viminalis (Brophy et al., 1985, 1997; Wheeler et al., 2003), C. citrina
(Wheeler et al., 2003), and M. cerifera (Halim and Collins, 1973; Bello et al., 1996)
leaves. Feeding and development by the O. vitiosa third instars on the North
American M. cerifera was more surprising considering these species are unrelated.
However, the similarity in terpenoids of the leaves from M. quinquenervia and
M. cerifera may explain this response. Probably one or more of these constituents
stimulated sensillae in O. vitiosa larvae that invoked a feeding response.
Consumption of the leaves of this species, though high in nitrogen and soft, resulted
in 100% neonate mortality and 80% third instar mortality, possibly due to the
presence of several unique terpenoids not found in M. quinquenervia leaves.

Predicting the host range of a potential biological control species is a fundamental
step in the development of a new agent. The results of host range tests are used to
estimate the potential risk to non-target species posed by releasing the agent. A
major concern is that once released the biological control agent will expand its range
beyond that which was predicted from the host testing results. Host range
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PZ 0.0400) than that of larvae fed the M. quinquenervia leaves.
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expansions in nature have generally been restricted to plant species of the same
taxon, such as to the same genus (Horton et al., 1988) or family (Bush, 1975;
Tabashnik, 1983). Host expansions by insects introduced for weed biological control
over the past 90 years have been few. Like insect herbivores in general, those few
weed biological control agents that have expanded their host range have done so to
closely related species within the same family or genus (Pemberton, 2000). The
results reported here confirm the results obtained during quarantine host testing
indicating that the only potential non-target species threatened by this species are the
close relatives, the ornamental Australian Callistemon species. All results have
indicated that the native speciesM. cerifera is not a physiological host, as none of the
first instars complete development when fed this species. Furthermore, quarantine
results indicated that no oviposition was found by O. vitiosa on M. cerifera
(Balciunas and Buckingham, 1996). Thus, the only potential damage to this native
plant in natural conditions may occur as ‘spill-over’ from larvae feeding on
neighboring M. quinquenervia. Since the release of this biological control agent in
1997, no such damage to M. cerifera has been observed despite systematic field
observations (P. Pratt, USDA/ARS, Ft Lauderdale, FL, unpublished data).
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Moreover, as predicted from quarantine host testing and the data reported here, O.
vitiosa larvae are frequently found on ornamental populations of the Australian
Callistemon spp. Finally, the geographic range of M. cerifera extends north from
southern Florida to New Jersey and west to southern Texas (Small, 1972), whereas
that of M. quinquenervia is restricted to central and south Florida (Turner et al.,
1998). Thus any threat to M. cerifera is limited to the geographic range where the
two species overlap.

Analysis of the plant quality factors may explain how some species are
physiological hosts while others only elicit behavioral responses, like feeding and
oviposition. The leaf toughness and percent nitrogen in M. cerifera indicated that
this species had the softest leaves and the highest nitrogen content of those species
measured. Additionally, the relatively low percent moisture of these leaves indicates
that the foliar nutrients were less diluted than those of the other three species.
Conversely, it is possible that the low water content of the leaves could have
a negative effect on the performance of herbivores (Scriber and Feeny, 1979). The
terpenoid analysis of the leaves of M. cerifera indicates that many of the same
constituents found in the M. quinquenervia leaves were also present in leaves of the
other three species. Such major components as a-pinene, 1,8-cineole, limonene,
a-terpineol, b-caryophyllene that were shared by all species may individually
or collectively constitute feeding elicitors. A chemical variant or chemotype of
M. quinquenervia exists (Ireland et al., 2002; Wheeler et al., 2003) that has high
concentrations of another terpenoid E-nerolidol. This compound was also found in
M. cerifera leaves and in both species may elicit feeding behavior in O. vitiosa larvae.
The presence of several major components unique in this study to M. cerifera leaves
such as b-elemene, E-a-bergamotene, a-curcumene, germacrene D and the relatively
high concentrations of a-humulene and b-selinene may explain why this is not
a physiological host. Several of these unique compounds are known to be associated
with various biological activities in insects, such as b-elemene (Peterson et al., 2002),
E-a-bergamotene (Schmelz et al., 2001), a-curcumene (Agarwal et al., 2001; McBrien
et al., 2002), germacrene D (Innocenzi et al., 2001; Kalberer et al., 2001; Stranden
et al., 2003), b-eudesmol (Sogabe et al., 2000), and b-selinene, (Quintana et al., 2003;
Weissbecker et al., 1999). The decreased digestibility (AD) and assimilation efficiency
(ECD) found here are indications of the toxic effect of one or more of these unique
constituents. Although feeding elicitors may be present inM. cerifera, the high larval
mortality suggests one or more of these unique compounds could act as metabolic
toxins which were not successfully detoxified by the larvae.

In the initial stages in a weed biological control program a test plant list is
compiled to predict the host range of a potential agent when offered desirable plant
species. This list incorporates species that are of economic and ecologic importance.
Moreover, species are included that are taxonomically related to the weed species
being controlled as these are thought to be most at risk (Wapshere, 1974). If this
practice had been followed exclusively with the M. quinquenervia biological control
project, the nativeM. cerifera would not have been included in the test list as it is not
related to the weed. This species was only included because it commonly co-occurs
with M. quinquenervia and any agents released against the weed would likely
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encounter this native species (G. Buckingham, personal communication). Other
insect herbivores being developed for biological control of M. quinquenervia also
respond similarly to M. cerifera (Buckingham, 2001; Wineriter et al., 2003). Though
complete development of these agents did not occur, M. cerifera apparently has at
least some of the behavioral cues that are relevant to these M. quinquenervia
specialists. These results need to be considered in a broader context for all biological
control projects. When developing quarantine protocols for weed biological control,
test plant species need to be considered that share similar chemistry, not just
taxonomy. Such additions would include plant species, regardless of taxonomic
affiliation, that contain the host recognition cues most relevant to specialist
herbivore species making decisions of where to oviposit and begin feeding (Schaffner,
2001).
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